qubit

(eller kvantbit) – motsvarigheten i kvantdatorer till en bit: men en kvantbit står för 1 och 0 på samma gång. (Se superposition.) – Genom att använda qubitar kan man göra vissa typer av omfattande beräkningar mycket snabbare än med vanliga minneskretsar. – Ordet qubit står också för en fysisk anordning som kan hålla en qubit. Ett antal qubit som tillsammans representerar en matematisk storhet kallar för ett qubitregister (qubit register). – Qubitar är extremt känsliga för yttre påverkan, som gör att de ”kollapsar” till ett av de två värdena – 1 eller 0. (Att de bibehåller superposition kallas för koherens, att de förlorar det kallas för dekoherens.) Qubitar brukar därför vara nedsänkta köldmedier som flytande kväve och vara omsorgsfullt skyddade mot mekaniska stötar och vibrationer. Länge var rekordet i att hålla en qubit i superposition någon sekund, men 2013 lyckades forskare hålla en qubit i koherens i rumstemperatur i 39 minuter (se artikel i Science). Detta är anmärkningsvärt, eftersom andra försök har gett mycket kortare tider.

[experimentell teknik] [kvantdatorer] [ändrad 16 maj 2022]

kvantkryptering

avläsningssäker över­föring av med­delanden genom tillämpning av kvantfysikens principer. – Kvantkryptering innebär att meddelanden kodas som egenskaper hos fotoner: ettor och nollor representeras av egenskaper hos enstaka fotoner, vanligtvis polarisering. Det leder till att meddelandet blir omöjligt att avläsa på vägen. Om obehöriga upp­snappar med­delandet blir det nämligen oläsbart för dem, och avsändaren och mottagaren märker dessutom uppsnappandet omedelbart – förbindelsen bryts. (Uppsnappande av kvantkrypterade meddelanden kan, mycket allmänt, jämföras med att ta länkar ur en rullande cykelkedja utan att kedjan går av.) – I praktiken används kvant­kryptering bara för att parterna ska komma överens om en engångs­nyckel (one‑time pad) som de sedan använder för att kryptera ett meddelande som sedan överförs på vanligt sätt. – På engelska: quantum encryption. – Kines­iska forskare visade 2010 att även kvantkrypterade meddelanden kan knäckas, se här. – Kina sände i augusti 2016 upp satelliten Micius som ska användas för experiment med kvant­kryp­ter­ing. – Läs också om kvackare (quantum hackers).

[forskning och experimentell teknik] [kryptering] [kvantdatorer] [ändrad 16 augusti 2021]

Feynman, Richard

(19181988) – amerikansk fysiker och Nobelpristagare (länk). – Feynman var en av världens ledande forskare inom kvantfysik och partikelfysik. Han var också känd för sin förmåga att förklara grundläggande begrepp på ett enkelt och intresseväckande sätt. En av hans sista insatser var klarläggandet av orsaken till att rymd­färjan Challenger exploderade 1986 – det berodde på att en o‑ring inte tålde nedkylning. – Inom datorteknik är Feynman känd bland annat för att han var en av de första som förutsåg kvantdatorer. Han arbetade på 1980‑talet med utveckling av massivt parallella datorer. Under 1980‑talet samarbetade han också med Stephen Wolfram. – Feynmans föreläsningar om datorteknik har getts ut under namnet Feynman lectures on computation (utgiven år 2000). Han beskriver där de grundläggande operationerna i datorteknik. – Feynman tycks ha ansträngt sig för att framstå som excentrisk. En av hans många böcker heter What do you care what other people think?.

[datorvetenskap] [fysik] [personer] [ändrad 20 augusti 2018]

kvantdator

(quantum computer) – experimentell dator­typ som gör beräkningar med hjälp av fenomen från kvantfysiken, och som i fram­tiden kan bli mycket kraft­full. – Lite förenklat kan en kvant­dator med en processor be­arbeta många tal samtidigt. Mer precist: utföra samma be­räk­ning på många tal sam­tidigt. En klassisk dator måste däremot ta ett tal åt gången (såvida den inte har flera processorer). Kvantdatorer skulle därför radikalt snabba upp vissa typer av tidskrävande beräkningar. Många (men inte alla) så kallade NP‑fullständiga problem kan lösas mycket snabbare av en kvantdator än med en klassisk dator, men andra NP‑fullständiga problem skulle i praktiken ändå vara olösliga – det skulle ta tusentals år att lösa dem, även med en kvantdator. Enkla beräkningar kan däremot gå snabbare med en traditionell dator än med en kvantdator. En relativt lättfattlig förklaring från 2021 av kvantdatorexperten Scott Aaronson i tidskriften Quanta finns på denna länk.   – Den första som spekule­rade i möjligheten att konstruera kvantdatorer var nobelpristagaren Richard Feynman†. Algoritmer för programme­­ring av kvant­datorer utvecklades på 1990‑talet av den amerikanska mate­ma­tikern Peter Shor (länk), läs mer här och här. – Läs också om programspråken Quipper och Q#. – Kvantdatorer bygger på att materiens minsta be­stånds­delar, främst elektroner och fotoner, tycks kunna befinna sig i två oförenliga tillstånd på samma gång, till exempel två spinn samtidigt (superposition). En elektron i det tillståndet kan i en kvantdator därför stå för 1 och 0 på samma gång (men se Aaronsons artikel). Motsvarigheten till en bit (1 eller 0) i en vanlig dator heter i kvantdatorer qubit eller kvantbit – 1 och 0. – I en vanlig dator står ett tiosiffrigt binärt tal för ett av talen 0–1 023, men i en kvant­dator står motsvarande tal (tio kvantbitar) för alla tal från 0 till 1 023. Under rätt omständig­heter kan kvantdatorn vara i ett tillstånd där den verkar bearbeta alla dessa tal parallellt. – Läs också om Quantum in the cloud och IBM Quantum experience. – I augusti 2019 publicerade den amerikanska rymdflygstyrelsen NASA en artikel, skriven av Eleanor G Rieffel i samarbete med forskare på Google, där det beskrevs en testning av en kvantdator. Nasa tog bort artikeln efter några dagar, men den finns kopierad på denna länk. Det var en artikel om Googles påstådda lyckade demonstration av kvantsuveränitet (quantum supremacy) som av misstag hade publicerats i förtid. – IDG:s artiklar om kvantdatorer: länk.

[experimentell teknik] [kvant] [kvantdatorer] [ändrad 14 juni 2021]

Quantum in the cloud

(tidigare Qcloud) – ett projekt som ger intresserade möjlighet att pröva på en kvant­dator genom internet. – Pro­jektet drivs av universitetet i Bristol i England (bristol.ac.uk). Syftet är att intresserade ska få öva sig i programme­ring av kvant­datorer innan sådana blir vanliga. Man kan först köra experiment på en simulerad kvantdator. Därefter kan man köra samma experiment på en riktig kvantdator (länk) och jämföra utfallet. – Se Bristol‑uni­ver­si­tetets webb­plats (länk). – Läs också om IBM Quantum experience.

[forskning och experimentell teknik] [kvantdatorer] [ändrad 16 december 2017]

Quipper

ett programspråk för kvantdatorer. – Quipper kan hantera kvantdatorernas förmåga att räkna med qubitar, alltså värde­bärare som står i två oförenliga till­stånd samtidigt och därför kan representera både 1 och 0. Språket har utvecklats av Peter Selinger (länk)Dalhousie university i Halifax i Kanada. Det är baserat på ett annat programspråk, Haskell. – Läs mer här.

[kvantdatorer] [programspråk] [ändrad 16 april 2019]

spinntronik

en teknik som använder elek­tro­nernas spinn för lagring och behandling av data. Kallas också för spinnelektronik. – Spinntronik förut­sätter att man ställer in spinnet i ett antal elektroner, eller snarare i elek­tronerna i ett antal atomer – det går nämligen inte att hantera elektroner i samma atom var för sig. Sedan kan atomerna fungera som filter: de släpper fram elektroner med samma spinn, men stoppar elektroner med fel spinn. Spinntronik används redan i läshuvuden för hårddiskar. (Läs också om MRAM.) Nästa steg är att tillverka ett slags transistorer med spinntronik: de skulle släppa igenom eller stoppa strömmar beroende på spinnet. Sådana transistorer kan göras mindre och mer strömsnåla än vad som är möjligt med vanliga halvledare. Slut­ligen finns möjligheten att konstruera så kallade kvant­datorer med spinntronik. – På engelska: spintronics.

[experimentell teknik] [fysik] [kvantdatorer] [ändrad 4 november 2019]